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Outline

• Introduction: analytical and numerical descriptions of the coalescence!

• Hybrid PN/NR waveforms with higher modes (aligned spins)!

• Phenomenological inspiral-merger-ringdown model for precessing 
binaries
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• Coalescing binaries of compact objects (black holes and/or neutron stars) are one of the 
most promising sources of GW that we hope to detect with the advanced versions the 
ground based detectors LIGO and Virgo and with the future space-based detector eLISA.!

!

!

!

!
!
!
!
!

• Successfully extracting the very weak signal from the noise and estimating the parameters of 
the source with good precision can be achieved using matched filtering techniques provided 
that we have a very accurate modeling of the waveform.

Motivation: building accurate templates for gw detection

Mass

Neutron stars

Stellar Mass!
Black Holes

Super Massive!
Black Holes
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Advanced Interferometer network

LIGO 
Hanford

LIGO  
Livingston

VIRGO

The advanced versions of the LIGO Virgo interferometers to start observing runs in 2015

LIGO/Virgo Collaboration!
arXiv:1304.0670
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Estimated rates

••

• •

LIGO/Virgo Collaboration!
arXiv:1304.0670

LIGO/Virgo Collaboration!
Class.Quant.Grav. 27 (2010)



Dynamics of Compact Binary Coalescences

Loses energy by GW emission!
→separation decreases!

(and frequency increases)

To extract the signal from the instrumental noise (matched filtering),!
the waveform needs to be modeled with great accuracy
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CBC: modeling the inspiral with PN

During the «slow» inspiral, while the objects are far from each other, !
a perturbative treatment is valid:

post-Newtonian expansion in v/c
Newtonian estimate

1

2
µv2 =

1
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Gmµ

r
i.e.

v2

c2
=

Rs

2r
Rs = 2

Gm

c2

• Purely analytical approach: iterate Einstein equations in harmonic coordinates 

⌧µ⌫ = |g|Tµ⌫ +
c4

16⇡G
⇤µ⌫

⌧µ⌫     stress-energy pseudo tensor!
of matter + gravitational fields

rewrite Einstein eqs
hµ⌫ =

p
�ggµ⌫ � ⌘µ⌫

@µh
↵µ = 0 harmonic gauge

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫

• The formalism is based on an elegant combination of post-Minkowskian, post-Newtonian et multipolar expansions 

 !
• To make the calculation tractable: effective description in terms of (spinning) point particles (regularisation UV)  

 (also 2 different approaches ADM and EFT)

(see Living Review by Blanchet)



State of the art in PN

state of the art for the phase for quasi circular orbits:!
• non-spinning: 3.5 PN!
• spin-orbit: 4 PN Marsat, Bohe, Blanchet, Buonanno (13)!

• (aligned) spin-spin: 3PN Bohe, Faye, Marsat, Porter!
• cubic-in-spin: Marsat (14)
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For the full polarizations:

Non spinning:  (2,|2|), (3,|3|) and (3,|1|) modes to 3.5 PN!
! ! ! all other modes to 3PN !
All spin effects known to 2PN

Blanchet’s Living review (14)!
Faye, Blanchet, Marsat, Iyer (12)!
Faye, Blanchet, Iyer (14)

Arun, Buonanno, Faye, Ochsner (09)!
Buonanno, Faye, Hinderer (13)



NR simulations for the Merger

Non linearities become too strong: PN expansion breaks down!
→ need to resort to Numerical Relativity!
simulation of the full Einstein equations in vacuum!
!

Very expensive: O(100) configs. only (a few 105 CPU hours/config)!

For DA purposes, we need analytical models calibrated to simulations

Intrinsic parameter space is 7D: mass ratio + 6 spin components. Impossible to sample

Image from Scheel et al. (14)!

⌧
coalescence

⇡ ⌫�1f�8/3
initial

Typically, simulations span O(10) orbits before the merger (see however Szilagyi et al. (2015))

Going to low frequencies is very expensive

Going to large mass ratios is very expensive 1  q  18

very different scales to resolve!
longer time to merger

Going to large spins is expensive Scheel et al. (14)

+ instabilities + boundaries

� ⇠ .994

public SXS catalog



Progress

• Intro: Analytical and Numerical descriptions of the coalescence!

• Hybrid PN/NR waveforms with higher modes (aligned spins)  
Calderón et al., arXiv:1501.00918, submitted to PRD !

• Phenomenological inspiral-merger-ringdown model for precessing 
binaries 
Hannam et al., Phys. Rev. Lett. 113, 151101 (2014) 
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h(t, ✓,';⌅) = h+(t, ✓,';⌅)� ih⇥(t, ✓,';⌅)

h(t, ✓,';⌅) =
1X

`=2

X̀

m=�`

Y �2
`,m(✓,')h`m(t,⌅)

h`m(t,⌅) = (�1)`h⇤
`,�m(t,⌅)

Waveform Modes

-600 -400 -200 0
10-4

10-3

10-2

.1

t/M

|h
lm
|

q=18, non-spinning

-700 -600 -500 -400 -300 -200 -100 0
10-4

10-3

10-2

.1

1

t/M

|h
lm
|

q=2, non-spinning

Symmetry for aligned spins:
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'

Higher modes suppressed by powers of v/c and mass asymmetry 



hA(t, ✓,') = ei 0hB(t+ ⌧, ✓,'+ '0)

hA
`m(t) = ei( 0+m'0)hB

`m(t+ ⌧)

 0 2 {0,⇡}

Hybrids and Waveform alignement

h(t, ✓,';⌅) = h+(t, ✓,';⌅)� ih⇥(t, ✓,';⌅)

PN waveform

NR waveform

Hybrid waveform produced by!
stitching together two aligned waveforms!

over some suitable window

Ideally, if both waveforms were infinitely accurate, they would satisfy

Convention freedom:!
• time shift!
• def of azimuthal angle!
• def of polarization

or equivalently, their modes would satisfy

with to preserve the symmetry property h`m(t,⌅) = (�1)`h⇤
`,�m(t,⌅)

Aligning consists in determining the best  (⌧,�0, 0) from the waveforms.
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How to choose a suitable window:!
• as early as possible (PN loses accuracy)!
• late enough to avoid junk radiation!
• long enough to remove NR oscillations (eccentricity…)  

(just as a reference, Schwarzschild ISCO ~.14)

�(⌧ ; t0,�t) =

Z t0+�t

t0

�
!PN (t)� !NR(t� ⌧)

�2
dt

Hybrid waveforms: (2,2) mode

q = 3

1- Determine timeshift by comparing the frequency over the window (other choices possible)

2 - Just align the phases e.g. at the center of the window

hA
`m(t) = ei( 0+m'0)hB

`m(t+ ⌧)



�(⌧ ; t0,�t) =

Z t0+�t

t0

�
!PN
2,2 (t)� !NR

2,2 (t� ⌧)
�2
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��`m = �NR
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⇡ mod 2⇡

◆

Hybrid waveforms with higher modes (alignement)

Now 3 parameters (⌧,�0, 0) and one obviously cannot hybridize mode per mode independently.

How to use the different modes to constrain these parameters?!
! - just hybridize the full waveform at a given sky position (very impractical)!
! - some amplitude weighted combination ? (subdominant modes noisier…)!
! - use the (2,2) mode as much as possible! 

1- Determine timeshift by comparing the frequency of (2,2) over the window

2 - Determine most of the 2 angular degrees of freedom using the (2,2) mode

3 - Break the degeneracy using the second strongest mode (usually (3,3) mode, unless not present !
! for symmetry reasons…)
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Example: q=18, non spinning, TaylorT1

secular “orbital” dephasing!
just as in the (2,2) mode case

We want to quantify the additional !
residual errors due to the higher modes

Amplitude ratio at the center !
of the matching window

Dephasing at the center !
of the matching window
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Origin of the amplitude discrepancies

For q=8 (non-spinning), we have waveforms from two different NR codes (BAM, SpEC).!
PN approximant: TaylorT1. Amplitude corrections (2,2) mode to 3.5PN, (3,3) to 3PN.

Amplitude ratio at the center of the matching window r`m =
|hNR

`m (t0 � ⌧)|
|hPN

`m (t0)|

Vary the extraction radius of the waves

Competing effects: !
! PN more accurate at low frequencies!
! NR extraction deeper in the wavezone at higher frequencies (gauge/code dependent)
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For some modes like (2,2), (2,1), the agreement is to the 1% level for large enough extraction radii!
(or extrapolated)

For other modes such as (3,3), (4,4)… larger disagreement even for extrapolated waves. The error 
is dominated by PN truncation error.

SpEC extrapolated vs TaylorT1 varying the PN order of the amplitude corrections:
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Adding the 3.5PN!
correction to the (3,3) mode

Faye, Blanchet, Iyer (2015)

Brings the disagreement!
down to ~2%!

on the amplitude of the!
first subdominant mode
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Up to redefinition of the polarization, this is: 

Vary the extraction radius of the waves

During the inspiral, in PN, �`m ' m�
orbital

Even at very large finite extraction radius, large disagreement for (l,l-1) modes.



0.05 0.06 0.07 0.08 0.09
⇥6
⇥4
⇥2
0
2
4

M⌃0

⇧ 3
,3
º �q,⌅⇥⇤�3,0⇥�q,⌅⇥⇤�4,0⇥�q,⌅⇥⇤�6,0⇥�q,⌅⇥⇤�8,0⇥�q,⌅⇥⇤�3,�0.5⇥�q,⌅⇥⇤�3,⇥0.5⇥

0.05 0.06 0.07 0.08 0.09
0
10
20
30
40
50

M⇥0

� 2
,1
º

Origin of the phase discrepancies

Slow convergence with extraction radius

1�(r/r0)
nfit to

To a good approximation independent of the physical configuration. Really a property of the code.
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Progress

• Analytical and Numerical descriptions of the coalescence!

• Hybrid PN/NR waveforms with higher modes (aligned spins)  
Calderón et al., arXiv:1501.00918, submitted to PRD !

• Phenomenological inspiral-merger-ringdown model for  
generic (precessing) binaries 
Hannam et al., Phys. Rev. Lett. 113, 151101 (2014) 
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Spinning black holes and neutron stars

Recent astrophysical observations indicate that black holes generically have (large!) spins

taken from Reynolds astro-ph.HE 1302.3260 (2013)

Supermassive Black Holes

similar picture for!
Stellar Mass Black holes

For Neutron Stars: largest dimensionless spin observed � ⇠ .4

(in a binary but companion not a compact object)

For NS-BH, expected to be lower, by ~ one order of magnitude.



Effect of the spin on the inspiral

The components of the spins that 
are orthogonal to the orbital plane 

change the inspiral rate, i.e. in 
particular the phase

The components of the spins in the 
orbital plane cause the orbital plane 

to precess: strong amplitude 
modulations
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taken from  Arun, Buonanno, Faye, Ochsner (09)

L

aligned spins!
slower inspiral

L

anti-aligned spins!
faster inspiral

6

B. Multipole moments with spin-orbit effects

The matter-source densities (2.9) depend on the com-
ponents of the stress-energy tensor. At the leading PN
order, the spin contribution therein (indicated by the
subscript S) reduce to

σ
S
= −

2

c3
εijk v

i
1 S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c5

)
, (3.10a)

σ
S
i = −

1

2c
εijk S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c3

)
, (3.10b)

σ
S
ij = −

1

c
εkl(i v

j)
1 Sk

1 ∂lδ1 + 1 ↔ 2 +O
( 1

c3

)
, (3.10c)

where δ1(x, t) = δ[x−y1(t)] means the three-dimensional
Dirac delta-function evaluated on the particle 1, and
1 ↔ 2 means the same quantity but corresponding to
the particle 2.
In Ref. [20] the SO terms have been computed in the

source mass quadrupole moment Iij up to next-to-leading
2.5PN order and the source current quadrupole moment
Jij up to next-to-leading 1.5PN order. All the other
source moments were computed at the leading SO order.
Those results are sufficient for our purpose. Actually, to
compute the specific contributions of tails we need only
the moments at leading SO order, given for general ℓ by

I
S
L =

2ℓ

c3(ℓ+ 1)

[
ℓvi1S

j
1εij⟨iℓ y

L−1⟩
1 (3.11a)

− (ℓ− 1)yi1S
j
1εij⟨iℓv

iℓ−1

1 yL−2⟩
1

]
+ 1 ↔ 2 +O

( 1

c5

)
,

J
S
L =

ℓ+ 1

2c
y⟨L−1
1 Siℓ⟩

1 + 1 ↔ 2 +O
( 1

c3

)
. (3.11b)

Because the leading SO terms scale as O(1/c3) in the
mass source moments, and as O(1/c) in the current
source moments, the number of non-linear terms needed
in the radiative moments [Eqs. (5.1) below] is small. We
refer to Sec. V of [20] for higher-order expressions of SO
contributions of the source quadrupole moments.

C. Equations of motion with spin-orbit effects

Here we investigate the case where the binary’s orbit is
nearly circular, i.e., whose radius is constant apart from
small perturbations induced by the spins (as usual we
neglect the gravitational radiation damping at 2.5PN or-
der). We denote by x = y1 − y2 the relative position of
the particles (and v = dx/dt). Following Ref. [42] we in-
troduce an orthonormal moving triad {n,λ, ℓ} defined by
n = x/r as before, ℓ = LN/|LN| where LN ≡ mν x× v
with ν = X1X2 denotes the Newtonian orbital angu-
lar momentum and ν the symmetric mass ratio, and
λ = ℓ×n. Those vectors are represented on Fig. 1, which
shows the geometry of the system. The orbital frequency
ω is defined for general, not necessarily circular orbits, by
v = ṙn+ rωλ where ṙ represents the derivative of r with

FIG. 1: We show (i) the source frame defined by the orthonor-
mal basis (x,y,z), (ii) the instantaneous orbital plane which
is described by the orthonormal basis (xℓ,yℓ, ℓ), (iii) the mov-
ing triad (n,λ, ℓ), and (iv) the direction of the total angular
momentum J (agreeing by definition with the z–direction).
Dashed lines show projections into the x–y plane.

respect to the coordinate time t. It is also equal to the
scalar product of n and v which we denote as (nv) = ṙ.
The components of the acceleration a = dv/dt along the
basis {n,λ, ℓ} are then given by

n · a = r̈ − rω2 , (3.12a)

λ · a = rω̇ + 2ṙω , (3.12b)

ℓ · a = −rω
(
λ ·

dℓ

dt

)
. (3.12c)

We project out the spins on this orthonormal basis, defin-
ing S = Snn + Sλλ + Sℓℓ and similarly for Σ. Next
we impose the restriction to quasi-circular precessing or-
bits which is defined by the conditions r̈ = 0 = ṙ so
that v2 = r2ω2 (neglecting radiation reaction damping
terms). In this way we find [19] that the equations of the
relative motion in the frame of the center-of-mass are

dv

dt
= −ω r

[
ωn+ ωprec ℓ

]
+O

( 1

c6

)
. (3.13)

There is no component of the acceleration along λ. Com-
paring with Eqs. (3.12) in the case of circular orbits, we
see that ω is indeed the orbital frequency, while what
we call the “precessional frequency” ωprec = λ · dℓ/dt is
proportional to the variation of ℓ in the direction of the
velocity v = rωλ. We know that ω2 is given by

ω2 =
Gm

r3

{
1 + γ (−3 + ν) + γ3/2 (−5sℓ − 3δσℓ)

}

+O
( 1

c4

)
, (3.14)

where we denote δ ≡ X1 − X2 and sℓ ≡ (sℓ) = s · ℓ,
where the spin variables are defined by Eq. (3.9). The PN



Dynamics of precession
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3 timescales: t
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On the orbital timescale: J, L, S1, S2 fixed

L orbital angular momentum

On the precessional timescale:  L, S1, S2  precess around J which remains fixed

derivative operation does not commute with the regularization operation at 1, and we have
generically for singular functions F in the class considered in Ref. [44]:5

d

dt
(F )1 = (@tF )1 + (vi1@iF )1 , (2.20)

where (G)1 represents the value ofG at particle 1 position in the sense of the Hadamard partie

finie. In order to present a closed-form expression for ⌦ij in terms of the metric potentials,
we first applied the total time derivative there according to the Leibniz rule on individual
monomials composingH ij, applying the distributivity ansatz [i.e. (FG)1 = (F )1(G)1] for the
products. We next replaced the accelerations by their expressions in terms of the potentials.
For the time derivatives of quantities regularized at 1, we resorted to Eq. (2.20). Finally, the
partial time derivatives of the potentials were eliminated in turn by means of the identities
(3.28) of Ref. [45], which are equivalent to the harmonic gauge condition.

Since we are working at linear order in the spins, only the non-spin parts of the metric
potentials enter the computation of the matrix ⌦ij. Most of those contributions are the
same as those required for the 2PN equations of motion without spin.6 There are only two
genuine 3PN potentials: One of them, Ẑij at Newtonian order, has the same structure as
Ŵij; The other one, Ŷi, which enters the term �16@[iŶ j] in Eq. (2.19), shows a higher order
of non-linearity (in powers of G). Only its regularized value can be computed, using dimen-
sional regularization in principle, as was done for the 3PN equations of motion without spin
obtained in [46]. Like for the term S̃jk(@ijŶk)1 appearing in the equations of motion (see
Section V of Paper I), we find that the corrections coming from the dimensional regulariza-
tion exactly cancel out because of the antisymmetrization due to the contraction with the
spin tensor. Thus, like in Paper I, Hadamard’s regularization is su�cient for our purpose
here. The remaining 3PN metric potential, T̂ , does not contribute.

Due to the length of the expression, we relegate to Appendix B the relation between
the conserved spin vector and the spin tensor in terms of the orbital variables derived from
Eqs. (2.2) and (2.9). We conclude this Section by giving the explicit expression for the
precession equation of the conserved spin 1:

dS1

dt
= ⌦1 ⇥ S1 . (2.21)

The vector ⌦1 may be expanded at 3PN order in the form:

⌦1 =
1

c2
⌦

1PN
1 +

1

c4
⌦

2PN
1 +

1

c6
⌦

3PN
1 +O

✓
1

c7

◆
. (2.22)

Except for the spin tensor, we use the same notations for the orbital variables as in Paper I:
(uv) denotes the scalar product u · v = uivi and w = u ⇥ v the cross product between u

and v, whose components are given by wi = "ijkujvk. At leading order, we have

⌦

1PN
1 =

G

r212
m2


3

2
n12 ⇥ v1 � 2n12 ⇥ v2

�
, (2.23)

5 This equation states that, formally, the Hadamard regularization commutes with the operator vµ1 @µ.
6 The non-spin part of the acceleration has the form ai = F i � dQi/dt with Qi = P i � vi; see Eqs. (3.5)

and Eqs. (3.7) in Paper I.
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of non-linearity (in powers of G). Only its regularized value can be computed, using dimen-
sional regularization in principle, as was done for the 3PN equations of motion without spin
obtained in [46]. Like for the term S̃jk(@ijŶk)1 appearing in the equations of motion (see
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On the radiation reaction timescale: J and L shrink but in most cases !
the orientation of J remains constant.         varies

↵̇(t)

◆



Factorizing precession effects

Idea: one can factorize the effect of precession by going to a non inertial frame in co-rotation with 
the system. «Quadrupole alignment»

Precessing waveform + appropriate rotation R(t) ≃ Non Precessing waveform

≃

Schmidt et al. (2011, 2013), O'Shaughnessy et al. (2011, 2013),  
Boyle et al. (2011, 2013), Pekowsky et al. (2013)

The appropriate rotation can be read off the precessing waveform by following the direction that 
instantaneously maximizes the radiated power.

This closely follows the orbital angular momentum L. 

One can model a priori the rotation by solving the precessional dynamics (◆,↵)



Twisting up non precessing waveforms

• deduce R(t) from EOB dynamics → EOB!
• analytical PN prescription → PhenomP

One cheap(er) way of modeling precessing wfs is to model the evolution of L i.e. of 

Hannam et al., PRL.

(◆,↵)

and then twist up a non precessing waveform

hP
2m(t) = e�im↵

X

|m0|=2

eim
0✏d2m0,m(�◆)h2,m0(t),

non precessing !
waveform modes!

(PhenomC)

precessing!
modes angle dependent!

factors

• PN angles with NNLO spin-orbit corrections, continued through merger!
! see also Ossokine et al. (14), comparisons of the dynamics. Gauge issue…!
• model formulated in the frequency domain (faster DA) using the SPA (even through merger!)!
• Uses approximate degeneracies 6 → 2 spin params!
• Note that no NR precessing simulation was used to formulate the model

✏̇ = ↵̇ cos ◆



Inspiral-Merger-Ringdown models for aligned spins

For data analysis purposes, we need models that cover the full coalescence and that are fast 
to evaluate (purely analytical or solving ODEs)

Two main strategies have been proposed and implemented so far!
!

- Effective One Body formalism (first introduced in Damour, Buonanno (98))!

resummation of the PN results!
map the two body problem to the motion of a test particle in a deformed Kerr metric!
factorized waveform!
calibration to NR!
connection to ringdown: sum of quasinormal modes!
!

- Phenomenological models!
frequency domain!
PN at low frequencies (SPA treatment)!
ansatz fitted to NR simulations for the merger!
effective spin parameter!
connection to ringdown!

Phenom B/C models for aligned spins

Ajith+ CQG 2007, Ajith+ PRD  2008 
Ajith+ PRL 2011, Santamaria+ PRD 2010



aligned IMR Phenom: effective spin

In principle 3 intrinsic parameters: ⌘ =
m1m2

(m1 +m2)2
,�1 =

S1

m2
1

,�2 =
S2

m2
2

�(f) =
3

128⇥v5

⇢
1 + v2


3715

756
+

55⇥

9

�
� v3


16⇤ �

✓
113

3
� 76⇥

3

◆
⌅s �

113�

3
⌅a

��
+ . . .

Fourier domain PN phase:

leading order effect of spin

� ⌘ �s + ��a �
76⌘

113
�sThe effective parameter

is sufficient to reproduce the leading order effect of spin in the phase. One can rewrite 
the higher orders in terms of it plus a correction that is ignored.

�s = (�1 + �2)/2
�a = (�1 � �2)/2

Idea: capture the main features of aligned spin waveforms with as little new 
parameters as possible (the more params there are, the more expensive the DA).!
On the other hand, prevents from measuring individual spins...

In fact, for historical reasons, slightly different choice...

(cf Pürrer et al (2013))



IMR Phenom models: aligned spin

Ajith+ CQG 2007, Ajith+ PRD  2008 
Ajith+ PRL 2011, Santamaria+ PRD 2010

PN RD

effective spin

Fit of the dependence of the phenomenological parameters!
 on the physical parameters via hybrid waveforms



Effective precessing spin

Here again, the idea is to minimize the number of «extra» parameters with respect to non 
precessing models, i.e. to capture the main features of precessing wfs with as little new 
parameters as possible.

The quantity that affects the phase the most is the precessional speed      . Its leading order in 
PN can again be described by some combination of the spins, but it is not constant!

↵̇

We use the following strategy to restrict ourselves to ONE extra spin parameter: !
- consider a single spin system!
- average the PN precessional equations over the orientation of the spin in the orbital plane!
- the averaged equations now only depend on      and the effective aligned spin �p �e↵

Our new parameter has a simple interpretation in the single spin case. In the double 
spin case, we expect that some value will allow to capture the main effects.!
(presumably the one that reproduces the averaged LO of    )↵̇

Note that from the point of view of data analysis, this doesn’t just mean one extra parameter:!
 source orientation and polarization now have to be taken into account!



PN description of the precessional angles

z
J

|J|

n

x

y

◆

↵

�

`

orbital

plane

see Blanchet, Faye, Buonanno (06)!
Marsat, Bohe, Blanchet, Buonanno (14)

cos ◆ = ` · J

|J| =
Jlp

J2
` + J2

n + J2
�

Neglect radiation reaction:  J conserved!
!
Expression of J in terms of the spin components is known to !
3.5PN (NNLO) at the spin orbit level.

Closed form expressions for the angles in the frequency domain! Does it behave through merger?

d↵

dt
= �!prec

sin ◆

Jnp
J2
n + J2

�

d↵

d!
=

1

!̇

d↵

dt
+ ↵(!)

Reduce to 2 effective spin parameters: !
! single spin + orbital average to reexpress the rhs in terms!
! of the conserved at SO level magnitude of the in plane spin

(bring back rad. reaction)



PhenomP: effectualness study
PhenomC PhenomP

Fitting Factors against a PN-NR hybrid waveform with !
50M, fixed polarization, q=3, single spin 0.75 in the plane

Fitting factor = overlap optimized 
over the whole freedom in the model
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q = 3, �e↵ = �0.5, �p = 0.6

PhenomP: FF for various physical configurations

q = 3, �e↵ = �0.125, �p = 0.75

q = 3, �e↵ = 0, �p = 0.75

q = 3, �e↵ = 0, double spin in the orbital plane

The model has very high fitting factor to PN/NR hybrids



• Refining the model:!

• Easy to “update” as the underlying aligned spin model is refined 
(PhenomD, calibrated to more NR waveforms coming soon).  
(in collaboration with Husa (UIB), Hannam, Pürrer (Cardiff))!

• Also calibrate the rotation during the merger ringdown.!

• First IMR model fast enough to be usable in data-analysis!

• Study the possibility of doing a precessing search in 
Advanced LIGO (so far, only aligned spin search, and for 
the first time)  
(in collaboration with Buonanno, Harry, Privitera (AEI, Potsdam))!

• Parameter estimation studies: can we tell if a system is 
precessing? 
(in collaboration with Hannam, Pürrer (Cardiff), Vitale (MIT))

Next steps



Conclusions

The perturbative post-Newtonian approach to the coalescence of compact 
binaries and the numerical description of the merger can be combined in 
several fruitful ways to produce accurate inspiral-merger-ringdown 
waveforms.!
 

In this talk, I have discussed,!
• ! construction of hybrid waveforms with higher modes!
• ! PN description of the precessional dynamics as an ingredient of a 

full IMR analytical model

Many other possible fruitful interactions: calibrate (ingredients of) IMR 
models, discriminate between inspiral only Taylor approximants, identify 
“efficient” gauge choices for NR…


